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Abstract

Strongly nonlinear dispersive waves described by a general Klein-Gordon

equation with slowly varying coefficients and a dissipative perturbation are

considered. The method of multiple scales shows that the equation for wave action

and the dispersion relation (based on the averaged energy) are valid to a higher

order than anticipated. Thus, higher order terms are calculated from the first

variation of wave action. The spatial and temporal slow modulations of the

phase shift are shown to be governed by a new equation, which is universal for

small but otherwise arbitrary dissipation. This result extends to nonlinear

partial differential equations the quite recent work by the authors on new

adiabatic invariants for nonlinear oscillations governed by ordinary differential

equations.
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1 . Introduction.

Oscillatory solutions of strongly nonlinear dispersive waves are quite

common, perhaps the most well-known being the cnoidal waves for the Korteweg-

deVries equation. In order to understand the effects of a slowly varying medium, Luke

[1] in 1966 utilized themethod of multiple scales to analyze a model nonlinear problem,

the nonlinear Klein-Gordon equation. This extended Kuzmak's work [2] on oscillatory

solutions of nonlinear ordinary differential equations to the case of nonlinear

partial differential equations. In this way, the amplitude-dependent dispersion

relation could be used to show that the slow time and spatial evolution of the

amplitude of strongly nonlinear dispersive waves was governed by conservation

of wave action, the appropriate generalization of the adiabatic invariant of

nonlinear ordinary differential equations. With a small perturbation representing

damping, Whitham [3) showed how wave action was dissipated.

Although the modulated phase shift for a nonlinear wave is part of the

leading order long time slowly varying solution, it has eluded previous efforts

until now. For unperturbed non-dissipative systems, Luke [1] correctly observed

that the phase shift satisfied a second-order equation, one solution of which

is a constant. However, the equation was not stated, which apparently has led to

some common misconceptions concerning the phase shift. The same non-dissipative

situation was reexamined by Dobrokhotov and Maslov [4]. They introduced some

imaginative ideas that enabled the perturbation method to be carried out to the

higher order necessary for the calculation of the phase shift. Unfortunately,

their technique is not as easy to implement as ours, which we believe is the reason

they incorrectly omit a term in their analysis. For the case of strongly nonlinear

ordinary differential equations with small arbitrary damping, we (Bourland and

Haberman [5]) quite recently obtained the second-order differential equation for

the modulated phase shift. We showed that the phase shift O(T) is determined
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from a new and unexpected adiabatic invariant of universal form, independent of

the type of small (but arbitrary) damping; the small frequency modulation do/dT

was shown to be a constant multiple of the derivative (with respect to energy)

of the amplitude-dependent frequency of the nonlinear oscillator.

In §2, we apply the method of multiple scales to the nonlinear Klein-Gordon

equation with slowly varying coefficients and a small arbitrary perturbation.

There we briefly rederive the well-known equation for the dissipation of wave

action:

7- (-'.]) - c 2 (X,T)V - (kJ) = - R , (1.1)

where k is the wave number vector, w the frequency, -wJ the wave action,

-c2Jk the flux of wave action, and R the dissipation of wave action. In §3,

we begin to analyze the perturbation expansion to a higher order. If the

leading order perturbation is dissipative, then we show that wave action

satisfies (1.1) to at least one higher order than would have been anticipated.

Thus, we show that the equation needed to describe the modulations of the phase

shift O(X,T) may be obtained in a simpler way, by just considering the first

variations of the well-known equation for the wave action. We conjecture that

this is a general principle.

We obtain the phase shift in §4 by eliminating secular terms at a higher

order in our perturbation expansion. Here, we show that the leading order

perturbation u1 of the leading order solution u0 satisfies

A

u ee Duo (1.2)
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where in §4 we obtain D and show it to be a linear first-order differential

operator in the slow parameters, energy and wave number vector. We choose
A

D in the appropriate way so that it is easy to derive that the partial differential

equation for the modulated phase shift O(X,T) is

A2

DT(-wj) - c (XT)Dv (kJ) = 0 . (1.3)

Later (in §6) we show that D is the Taylor series operator in the parameters

E and k, so that

D=El1 -Ll+k , (1.4)

where = VO is the Derturbation of the wave number and E is the average of

the perturbation of the energy. In (1.3) DT and D are partial derivatives of
A A A

the operator D. (In one-spatial dimension Dv = DX' while in higher spatial
A A

dimensions DV is defined in §4.) It is interesting to note that once D is

determined, (1.3) can be obtained fromthewave action equation (1.1) byA A
replacing a by DT , V. by DV., and omitting the dissipation. Equation (1.3)

is a partial differential equation since the coefficients for 0 depend on

OT and V0.

In §5 we obtain equivalent results for the Klein-Gordon equation by

elementary (but innovative) considerations of the first variation of wave action

(1.1) with respect to perturbations of the wave number and averaged energy. We

show that the perturbation of the frequency is accurately determined from a
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higher-order dispersion relation which includes the averaged perturbed energy.

From these ideas, we obtain

I (-wJ) + V T 'Vk( -w) - cVEl " (J) - cJV4 0

(1.5)

where E = (-T - Vk" *V)/mE is the average of the perturbation of the energy.

Equation (1.5) is shown to be equivalent to (1.3). Its form is universal, since

it is independent of the dissipation. We conjecture that (1.5) is a new general

principle for the determination of the modulations of the phase shift. In the

case of ordinary differential equations, our [5] recently proposed adiabatic

invariant follows directly from (1.5), and §5 dramatically simplifies its

interpretation. Stability of these nonlinear periodic waves are discussed in §7.

2. Nonlinear Dispersive Waves.

In this section, we will derive in the standard way the equation for wave

action for the perturbed nonlinear Klein-Gordon equation with slowly varying

coefficients

u - c2 (XT)V2 u + Vu (u,X,T) + Eh(u,utVu,X,T) + e2h (uut,Vu,X,T) = 0utt ~ ~

(2.1)

where V(u,X,T) is a nonlinear potential depending on the slow-time scale

T = et and slow spatial scales X = ex. The notation V 2 is being used.

We assume the potential admits oscillatory solutions of (2.1) (for all fixed X, T)

on the fast time scale t without the perturbation (i.e., when h = h1 = 0). Unlike

Luke [1] and Dobrokhotov and Maslov [4], we allow an arbitrary slowly varying

W -
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small 0(c) perturbation, Th. To show the effects of an even smaller perturbation,
we include the E2h I term. For the early parts of this paper, we make no further

assumptions concerning these perturbations. However, the most interesting conclusions

(that we will reach in later sections) occur when Eh is a dissipative perturbation,

so that h is odd in the combined arguments ut and Vu

[i.e., h(u, -ut, -Vu, X , T ) 
= -h(u,utVu,X,T)] and 2 hI is non-dissipative

(even in the combined arguments).

We use the method of multiple scales [6] with the fast scale p and the slow

scales T and X:

e(X,T)
q- = + O(XT)

T = EAt

X = E X

and follow the procedure we [5] used for ordinary differential equations. This

form of the method of multiple scales is particularly suited for the eventual

first determination of the phase shift O(X,T). For example,

u t =( T + T )u + E: uT ,

so that (2.1) becomes exactly

(eT + uT) 2% + E[(6TT + ';TT)U + 2(eT + EOT)ulT]

- c2 (Ve + EVO) 2u - Ec
2[(V2e + £v2 O)U + 2(Ve + E:V). Vu,]

+ 62 uTT - E;2C2 2u + Vu (u,X,T) + sh + 2h c 0v. (2.2)
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N
where from here on V @ i refers to differentiation of a quantity

il
with respect to the slow spatial variables. We now introduce the perturbation

expansion

u(i,X,T) = uO(ip,X,T) + cu1 (l,X,T) + e2 u2 ( pX,T) +
0

It is convenient to note that

Vu (uXT) = Vu (u 0 ,T) + (EuI + C2u2) Vuu(uoX,T)

£2 1 +
+ CuV (uoX,T) + O(c2 T uuu

h(u,ut,vxu,X,T) = h(ueT u + ECTu% + CuT , Ou + EOLV + eVu , X,T)

= h(uoeTu0 ,VOun ,X,T)

+ s[UIhu + (eTu1 + TuO + uO T)hv + (yOU1 + Vou 0 + Vu0)h ]

+ 0(E2)

where hu h u(UOeTuO Uo0 Ve,X,T) hv = hut (Uo916 UV ,X,T)

N
and h§=I@hule u VOXTand~ q z i-l a~aulax i) @i hu'T o01P 0 XT)

Substituting the perturbation expansion into (2.2) yields, to leading order,

the nonlinear oscillator equation:
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[e - c2 (X,T)(Ve ]uo + Vu(UoX,T) = 0 (2.3)

The higher order terms become

L(ui)=R. for i 1,2, ... , (2.4)

where L [e2 _ c 2 (X,T)(Ve)2 ] D-2+ Vu ,X,T) is the linearization of the
T (xT(v)]

nonlinear operator in (2.3). It is not difficult to obtain the right-hand

sides. For example,

R1 = _ 2[ TOT c 2(X,T)Ve-Vq]u
0

- 2[8 - c2 (X,T)Ve.v]Uo- [ - c2(XT)V2 e]u (2.5)-lT ;-T- 0 -[TT 0

- h(uo,eTuou 0 Ie,X,T)

R - 2[DTeT - c2(X,T)Ve. V@]ul 2[e T  - (XT)ve.vlu

- [eTT - c2 (X,T)V2 ]Ul - [(qT )2 - c2(X,T)(V) 2]uo0

- L - c2(XT)V 'V]uo T- - c2 (XT)V2 ]Uo (2.6)
2[@TD T  - 0 -1_

lV (uX,T)u2 - [ - c2(X,T)V 2Juo
2 Vuuu(Uo - ~

" hl - Uhu - [eTuII + TuO + u0 Thv - [VOUI + VOu 0 + VUo] hV

where hI is evaluated at the leading order.

The leading order equation (2.3) is a nonlinear ordinary differential equation

in the fast variable ip. Multiplying by u0 and integrating once yields the

conservation of energy equation,

- V VV Ar.pV r W
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[6. eT c NO, INJ\+U0 , T (X 2.)I

where E(X,T) satisfies a well-known equation, which we will rederive. Standard

phase plane analysis shows that the solution u0 (p,X,T) is periodic in ip

for appropriate potentials V(uo,X,T), oscillating between uO and Um with
min max

min' X,T) = E and a similar expression involving uAs Luke mla showedmi '~Umax "

and we [5] repeated, u0 (p,X,T) can be defined as an even function of p with

uo(OXT) = um or um and -- (O,X,T) = 0. The period of the oscillation
min max

in the fast variable is constant [1], and we normalize it to 1 (although 27 is

often used) which gives

2 2 2 uO mx(X,T) -

(T) - c (X,T)(Ve)2.= 2 j [E(X,T) - V(uo,X,T)]-du0  .

u uOmn (X,T) V

(2.8)

In this situation, the notation k ye for the wave number vector and w = -eT

for the frequency is appropriate.* Equation (2.8) may be

regarded as the dispersion relation, w = w(k(X,T),E(X,T),X,T), for the propagation

of nonlinear waves in a nonuniform media as described by (2.1).

Some well-known results on the linearized operator are needed to analyze

the higher order equations, L(yi) = Ri . Taking the derivative of (2.3) with respect

to i yields L(uo ) = 0, showing that u0 is a homogeneous solution. Since

u0 (W,X,T) is an even periodic function, u0 is an odd periodic homogeneous solution;

usually it is the only periodic solution [1]. In order for the solutions of (2.4)

to be periodic, the Fredholm alternative implies that

In comparing this to the case of ordinary differential equations, note that wode=-Wpde .

ode"-wpde

W'- ' %. MM "M% L - , flP.-PrAM '%A'A - . -& FR$
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uR1 ."= (2.9)

equivalent to the usual secularity condition.

For i= 1, using (2.5), (2.9) becomes

T - c 2 (X,T)ve. vJ Ju 0  uU di

2 1

-TT c c2(X,T)V 2 ] fu 0 U0 d

fo, h~u~e T UOu 0 Ve,X,T)dp=

The first integral is zero. The next two integrals combine to yield Whitham's

[3] well-known partial differential equation describing the possible dissipation

of wave action:

7 [6~ J(uO )2 dip c2 (X,T)V. [(ye) f(u 2 dp]

(2.10)

+ {o h(u0,eN~,S u 0 PVe,X,T)u 0 dip=O0

We define the latter integral to be the dissipation R and

J JO ( 0 ) dip (.1

so that (2.10) may be written as

.a. (e Tj) -c V. (JVe) + Joh(us T u Vu 0 PVe, X,T) d p =0 . (.2

e 'p -
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For ordinary differential equatcons [2), this simply reduces to the possible p

dissipation of action (an adiabatic invariant if h = 0).

3. Higher Order Wave Action.

In this section, we show that wave action satisfies (2.10)to at least

one higher order. We will use this in §4 to determine an equation for the

modulations of the phase shift (X,T). To obtain these results, we eliminate

the secular terms in the (-2 ) equation:

0J R % dQ = 0 , (3.1)'

where R2 is given in (2.6). As with the case of ordinary differential

equations ([4],[5]), the following difficult term can be calculated by integration

by parts, then by recalling the definition of L, and finally by using L(ul) =Rl:

Vuuu(uo' T)uI 0 Id 2Vuu( 0,T)u 1uI dip

2[L(ul) - (W 2_c 2k2 )ui ]Ul di

=2 {2 2TvT c2 lu + 2(eT c 2 e.7)U
-{ .(TeT c04j)uO T T u

+ (eTT -c2V2e)U 0 + h(uO,leTuO, u Ve,X,T)} uI d

where the periodicity of some expressions has also been used. In this manner,

from (.3.1), we obtain

r . I



" dip] - CV -[Vq (u )2 d]
i2 pd

2.. eT ( u du1  - c2 V[- (ve oJ0 21
(3.2)

11
+ hu dip + u1u0 h udi + fleTu1 + TU0+ u T 0 h

" O(veuI + VOUo + uO) uO;-h d + foh Uo0dq = 0

A similar calculation was presented by Dobrokhotov and Maslov [4]. They

incorrectly calculated one term and thus did not obtain (3.2). Furthermore,

their results were for unperturbed systems (h = h1 = 0). Equation (3.2) is

not a difficult equation; by comparing it to (2.10), we see that most of the

terms are the first variation of the wave action equation (2.10), as we now

show. Wave action is a concept valid for the leading order terms in a

perturbation expansion. The wave action defined in terms of total frequency,

total wave number vector, and total u will not satisfy (2.10). However, we

expect there might be an 0(E:) correction:

T +-- u [(OT + T )  (ou + U +... d,]

f o, + )- c2v7-[( 7e +c 1J u) ,+ .. d

+ oh(uo+ Eul + ...,(El + ET)(uO + E ul  + '' ), (Ve+EV4)(Uo0 +uI P +..),X,T)k

cP

% %k;
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We compare the above to (3.2) using (2.10) and determine that

P f - O hv + VuO  hV + hI  di + 0(E)

This gives us a simple method to obtain higher order corrections to wave action.

In general, action is not satisfied to higher order (i.e., P 0). However,

if ch is a dissipative perturbation and c2h is not a dissipative perturbation,

then the integrals above vanish (since h., h. and h1 are even). In this important

case, our perturbation method has proved that wave action is dissipated in the

same way as (2.10) to at least one higher order than would have been anticipated.

4. Modulated Phase Shift.

We restrict our attention to the situation in which ch is dissipative (and

thus odd in 'p) and 2 h1 is non-dissipative (and thus even in ip). To obtain

an equation for the modulations of the phase shift (X,T), we determine u1 and

substitute it into (3.2). We will obtain a universal form. Because u0 is even

in q and h is odd in 'p, we only need the even part of uI, u I From (2.4) and (2.5)
, , leven"

L(u1 even) - 2(- "T - c2k " V )u0  " (4.1)

We can easily solve (4.1) by noting the result of differentiating (2.3) with

respect to E (keeping X, T, and k fixed):

L(u ) : -2 E u0  , (4.2)UE Uoip

- 4 35 S
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since w(E,k,X,T). This idea was used by Luke [1] and Dobrokhotov and Maslov [4].

However, we can also take partial derivatives with respect to each component of the

wave number vector k. Since wVkw = c2 k from (2.8), it follows that

L(VkUO) = - 2 (wvk w - c2ku0  = 0 (4.3)

Thus, u0 is independent of k (as is also clear from (2.7) and (2.8))since

VkuO is even and periodic. [The only even homogeneous solution is not periodic

(see [1] or [5]).] By comparing (4.1) with (4.2):

" 1T - Vkw "  u0

even EOE

Thus, u, can be obtained by operating on uo:'Ieven

uI  = Du0  (4.5)
even

It is convenient and allowable (but not necessary) to include derivatives with

respect to k since VkU0 = 0 . Therefore, from (4.4), we define D as the

following linear first-order differential operator in the slow parameters E and k:

-D T - k V +  " k ' (4.6)

where p is arbitrary since VkU0 = o. However, we will discover that our

derivation is simplified for a specific choice in which p # 0.

N -
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We note that for any linear first-order differential operator

AA

0D h uwu ku ,X,T)u d4 =

hu 1d+ uO[huI + hv(-wu1 - D(M)u0 ) + (ku, + D(k) )" hV]di

(4.7)

since derivatives in the fast variable ip commute with D and since only the

even part of uI contributes to the integrals. These are precisely the terms

that appear in (3.2) if

(w) ="T (4.8a)

D(k) = VO (4.8b)

which will greatly simplify our derivation. Thus, we will show only one P

can be chosen to satisfy (4.8). From (4.6)

D(w) - T - Vkw" V, + 1 • Vkw

D(k) = i

Thus, (4.8b) is satisfied only if

which fortunately does sW isfy (4.8a), so that

*1I
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^ - V kW. -V
DE + V" k (4.9)

(In §6, we show that D is the Taylor series operator in the parameters E and k.)A

Substituting u1  = Du into (3.2) yields relatively easy calculations
A even

because D is a linear first-order differential operator. For example,

^ rl 2 1D JO W(0o1 )2d = 2 Ufo 0 u I 1 d

Thus, (3.2) simplifies:

- ( TJ ) - c 2V * (V J)
(4.10)

+ - (OTDJ) - c2V (VeDJ) + D hu di= 0

where again J is given by (2.11). However, from (4.8)

D(eTJ) = eTDJ + D(eT)j O TDJ + oJ

D(VeJ) = VeDJ + D(ve)J veODJ + VNj

since again D is a first-order differential operator. Thus, the conservation

form of the equation becomes

- 2A + (1 dpO .(.1

SD(eTJ) - c2VD(V J) D d = 0 (4.11)

This is the partial differential equation for the modulated phase O(X,T) since

D is given by (4.9). This result is particularly pleasing;it can be obtained
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from the well-known dissipation of wave action, (2.10) or (2.12), by replacing

by 0L D V. by V D and the dissipation integral by D operating on it.

However, (5.11) can be further simplified by just operating D on (2.12):

I2, D hu dip - _ L-3 (0TJ) + c2 DV-[VJ]

. The above can be used to "eliminate" the dissipation term in (4.11):

- D )- D (TJ)-c 2VD(veJ) + c2DV (VeJ) = 0 . (4.12a)

T D(GTJ) T

Therefore, we obtain a particularly simple representation:

^ 2^

DT(eTJ) - c D (Ve) = 0 , (4.12b)

since DT E D - D- and DV E V-0 - DV. Equation (4.12) has been derived

for rather arbitrary dissipation; its form is universal. The dependence on

dissipation is due to the dissipation of wave action (2.12). This result suggests

the following algorithm for obtaining (4.12): Starting from dissipation of wave
aA

action (2.12), replace -L by DT, V by Dv, and ignore the dissipation integral.

Note that in one spatial dimension, Dv = Dx , which is as simple as DT ' Similar

results are valid for Korteweg-deVries type equations [7]. For clarity, we note

that after using (4.9) and VkJ : 0 [see (7.6)] the equation for the modulated

phase shift O(X,T) becomes
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0 : -T 'k_ _
( II T (- wJ) + VT'Vk(- WJ)

CI

_ c ( '¢ VkW * l~

- C2 VOT E . (kJ) (4.13)

-c2 JV 2

Here, for example, -. refers to keeping only X fixed (not E or k).

In the spatially independent case (c2 = 0), (2.1) is a nonlinear ordinary

differential equation and (4.13) becomes

d _______WE

the adiabatic invariant for "arbitrary" dissipative systems that we [5] recently

discovered.

5. A Higher-order Accurate Dispersion Relation Depending on Averaged Energy.

In §4, we derived (4.13), the equation for the modulations of the phase

shift (X,T). Here, we will show how this result can be obtained from two

intuitive physical principles (and justify these ideas mathematically). We

have already shown one of these physical principles: the wave action equation

('wJ)T - c2 V " (k J) + R = 0 (5.1)

is valid to at least one higher order in an asymptotic expansion in powers of c,

if ch is a dissipative perturbation and E2h is a non-dissipative one.

%P y. .p
0

. .- . *



-18-

Wc conjecture (and later verify) a second physical principle, one based

on the averaged energy. We have defined via (2.7) a leading order slowly

varying energy Eo(X,T) in terms of the leading order frequency W0 9 wave

number vector k0, and solution uO. We will first introduce more accurate

expressions for the energy. There are two different methods for doing this.

We can define a mathematical expression similar to (2.7):

E l 2 2 2

Emath ! - [(eT+ET) - c 2(Ve+EV) ]u + V(u,X,T) , (5.2a)

based on the complete frequency, wave number vector, and solution. Alternatively,

we can use the physical expression for energy density:

E (ut)2 1 c2(vu)2 + V(uXT)physical 2 2 c x

which, using the multiple scale approach, can be rewritten exactly as

Ephysical T + T + 2 2  + 2 V(u,X,T)

(5.2b)

It is clear that both equal E0 to leading order [defined by (2.7)]. It is

straightforward to show that both Ephysica1 and Emath' as defined above,

oscillate on the fast scale with a small 0(e) amplitude. Moreover, they differ

at 0(e):

Ephysical - math 0 Uo (0TUOT - c 2Ve. VU0) + 0(
) 2

TT
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Both oscillate on the fast scale, so that we might expect their averages
1 1

to be important. Since fo u 0 T d0 p = 0 and o u o0 u0 d = 0 by parity

considerations, we note that

<Ephysical> - <Emath>0( 2) ,

1

where < > J d , represents averaging over the fast nonlinear oscillation.
Thus, we can use either expression forthe averaged energy and obtain identical

results valid to at least one higher order in powers of e.

By expanding either energy (5.2a) or (5.2b) to 0(e) and by integrating,

we obtain the averaged perturbation E:

~OT - c k0.) 0u d0 0 0w 1ck f ,u uui I Vud
f, o foU% 0 0

(5.3)

This expression can be simplified using our results from §4. Only the even
A

part of u1 is needed in (5.3), namely from (4.5) u = DuO. If we operate
A even
D on (2.7), we obtain

(W- c k0 )u0  Du 0  + u0 [woD(wo) - c k 0 D(ko)] + Vuo0 Du 0= D 0

which, after averaging (integrating) and using (4.8), yields an expression

for E from (5.3):

A "T - VkO" VOEl = D E 0 Wo E (5.4)
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We will show that (5.4) is an immediate consequence of a simple physical

conjecture. The local amplitude-dependent dispersion relation (2.8),

wO = w[ko(X,T), Eo(X,T), X, T], is well-known to be valid to leading order.

Intuitively, we might expect that the dispersion relation is valid to at

least one higher order if both the more accurate wave number vector

0+ I k, (with kl = Vf) and the more accurate averaged energy E0 + El are

used. We would then conjecture on the basis of physical intuition that the

perturbed frequency w, = " T is obtained from the elementary Taylor series of

this highly-accurate dispersion relation:

1 = E1 WE + kl • Vk wO (5.5)

Since this is equivalent to (5.4), we have proved the validity of a second

physical principle: the dispersion -elation is valid to at least one higher

order if an accurate expression for averaged energy is utilized in (2.7).

Frequency changes are only due to the perturbed wave number vector and to the

averaged perturbed energy. This is valid only if the perturbation ch is

dissipative and E2h non-dissipative (for otherwise we would expect further

frequency changes due to these).

We use this result to obtain the modulations of the phase shift by analyzing

the first variations of the wave action. Since (5.1) is valid to at least

one higher order, we will substitute k = k0 + c and w = wO + w into (5.1),

where k = VO and l = - T . Furthermore, we must use the more accurate integrals

R and J defined in terms of total k, w, and u. However, it can be shown from

§4 that R and J are functions of k and the average energy:

V4-V r



-21 -

R = 0 + c(E 1 ROE + kI VkRo) + 0(E2)

J = J0 + c El JOE + O (E2 )

since J is independent of k [see (7.6)]. In this way, (5.1) becomes

- [(wO + ewl)(Jo + E El JOE)]T

- c2  k +ckl)(J0 + EEIJOE)] (5.6)

+ RO + E(E1 R 0  + kl VkRo) + 0(E2) = 0

The leading 0(1) terms cancel, and

many of the 0(E) terms cancel since the partial derivatives with respect

to E and k of the leading-order wave action equation are also valid. Thus,

the remaining 0(E) terms must be in balance:

ElT(-wJ)E + VdT'Vk(- wJ)

(5.7)

- c2V El .kJE - c J V  = 0

where the zeroth-order subscripts have been dropped. We call (5.7) the

equation for the variation of wave action. When the expression for averaged

perturbed energy E1 is used, (5.4), we obtain (4.13), the linear partial

differential equation for the modulations of the phase shift. Since (5.7) is

the appropriate first variation of the wave action (5.1), it is in essence



-22-

the linearization of (5.1). Thus, the characteristic velocities of (5.7)

will be the same as those for (5.1), as shown in §7.

In summary, the equation for the phase shift can be obtained from the

correct higher-order accurate versions of the dispersion relation and the

wave action equation.

A

6. A Linearization Principle for D.

In §4, we noted that calculations needed for higher-order perturbations
AA

were simplified if we observed that u1even  Duo, where D is given by (4.9).

Here, we will show that this operator follows from an elementary understanding

of the linearization of the solution. For the Klein-Gordon equation, to

leading order, nonlinear oscillatory waves satisfy

u0 = U0; E, k, X, T) , (6.1)

where the usual dispersion relation (2.8) is satisfied

w = w(E,k,X,T) . (6.2)

If the perturbation is of the restricted class (dissipative) discussed

throughout, then higher-order terms do not effect the phase modulations

(other than via wave action). In this case and others, some of the higher-

order terms may be obtained simply by perturbing the parameters E and k in

(6.1) and (6.2). By this Taylor-series approach,
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u even E u + k.k u (6.3)1ve UoE ~Ik

l = E1 wE + kl'VkW . (6.4)

Here El represents (as in §5) an averaged perturbed energy. We again
:N

introduce k = Vp and I - T in which case (6.3) and (6.4) can be

combined to yield

u Du0  (6.5a)
even

where

D E +E k-E + V k V (6.5b)

IO= E _2 -+ k V -] k
l~E 1k( wE -'E

agreeing with (4.9). As defined this way, it automatic-'ly follows that
A A A

D(k) = kI : ,D()=wl T ,and D(E) = El

The equation for the modulations of the phase shift can be obtained

by higher-order perturbations of the wave action equation and dispersion

relation. These principles are easily extended to other systems, such as

KdV type equations [7], which has two amplitude parameters. Furthermore,

the equations for the phase modulations of harder problems, such as nonlinear

ones with multiple fast phases, should be analyzed in these ways as well.

If perturbations are not necessarily restricted, then the same type of

linearized system will occur with nonhomogeneous terms (representing, for

example, non-dissipative effects).
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7. Characteristic Velocities and Stability.

In this section, we first show that the characteristic velocities for

wave action are the same as the characteristic velocities for the modulations

of the phase shift. Then, we calculate these characteristic velocities for

nonlinear waves periodic in one-spatial dimension. We show that Klein-Gordon

waves are stable for hard potentials (i.e., WE/w > 0), while wildly unstable

for soft potentials (i.e., wE/w < 0). These soft Klein-Gordon waves will be

shown to satisfy an elliptic partial differential equation, and hence are not

well-posed as a slowly varying wave, in the same manner in which the Benjamin-

Feir instability arises for water waves and certain nonlinear Schr6dinger

equations (see Whitham [3]). For this unstable case, nonlinear waves with

nearly one wave number and frequency will not persist. Instead, solitary waves

(if they exist) or multi-phased spatially periodic waves (if they exist) might

develop (Newell [8]).

The wave number vector, frequency, and amplitude of a nonlinear periodic

wave slowly evolves in space and time according to the coupled system composed

of the dispersion relation (2.3), conservation of waves

k T + V' = 0 ,(7.1a)

and the principle of wave action

('wJ)T - c2 V (kJ) + R = 0 . (7.1b)

By considering the frequency w as a function of k, E, X, T, via the dispersion

.5
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relation, the system (7.1) is expressed in terms of the fundamental unknowns

E and k:

ki + Exiw E + kx * Vk -k W/9X i  (7.2a)

ET(-wJ)E + kT• Vk(-WJ)- c2JV. k - c2 (k VE)JE

-R- -L (-wJ) + c2*x " (kJ) , (7.2b)

where [only in the rhs of (7.2)] -X- -, and V refer to differentiation
i

keeping k and E fixed. Equation (7.2b) has been simplified somewhat since J

does not depend on k [see (7.6)]. By comparing equations for the wave action

(7.2) to the phase shift (4.13), it is apparent that the characteristic velocities

are identical.

We determine the characteristic velocities for slowly varying Klein-Gordon

waves in one spatial dimension. In this case, (7.2) becomes

kT + wEEX + wkkx = l.o.t. (7.3a)

(-uo)EET + (-WJ)kkT - c2Jkx - c2 kJE = l.o.t. , (7.3b)

where l.o.t. designates lower order terms, which are not necessary to calculate

the characteristic velocities. Equations (7.3) form a system of quasi-linear

first-order partial differential equations. By the usual method of diagonalization

(described and calculated by Whitham [3]), we obtain the two characteristic

velocities

%~~ of~ '**,,- 
"
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c2 kd E±JCV'E/x c 2 W
dX E C~rj~lw(7.4)

dT _(wJ)E

where wwk = c
2k has been used to derive this result as well as

2 22 (7.5)

The latter equation, (7.5), is derivable from conservation of energy,

u01 W _C2 21 E V&)=(w _2k2 f u max 4 ( E -V ) 2 du,

mmn

(7.6)

when the dispersion relation (2.8) is used. From (2.8), w2 - c2k2 only depends

on X, T and E. Thus, J does not depend on k, a result we have found useful

occasionally in this paper.

The characteristic velocities, given by (7.4), determine the stability

and well-posedness of nonlinear periodic waves for the Klein-Gordon equation.

The sign of E/u is important, since J > 0. Note that wE is determined from

the potential [see the dispersion relation (2.8)]. If wE/w > 0, which we

define as corresponding to hard potentials since the frequency increases with

the wave amplitude or energy, then the nonlinear periodic waves are stable.

The initial value problem is well-posed (see [5]). However, if wE/w < 0,

corresponding to so-called soft potentials, the velocities have a non-zero

imaginary part, implying that the partial differential equations are elliptic.

In this case the partial differential equation is not well-posed as an initial

value problem; the assumption of a slowly varying periodic wave is not valid.

-S ~ ~ ~ ~ * 5y ~ 5, ' V . IS *~ - *~-X
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The periodic wave would immediately be wildly unstable, yielding some other

type of solution. Thus, the phase shift analysis in this paper is applicable

only for hard potentials (wE/w > 0).
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Abstract

The phase shift and corresponding small frequency modulation for weakly

dissipated nonlinear oscillators with slowly varying coefficients is calculated

for the first time. This extends and corrects earlier work by Kuzmak, Luke,

and Dobrokhotov and Maslov. A new adiabatic invariant is derived, the ratio of

the perturbation of the frequency to the derivative (with respect to energy) of

the amplitude-dependent frequency of the nonlinear oscillator.
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I.Introi, ction.

Kuzmak [4] analyzed the long time effect of weak damping on strongly

nonlinear slowly varying oscillators. In his important work the leading order

solution was obtained. However, it was unjustifiably assumed.that the phase

shift of the oscillations was constant, and thus,that the frequency was not

perturbed. Since that work, refinements have been suggested ([1],[2],[3],[5]).

Luke [5] developed a more systematic approach to the problem using the method of

multiple scales that allowed the calculation of higher order terms. His paper,

nowever, only investigated the use of the method on the nonlinear Klein-Gordon

equation and did not examine the dissipative perturbations discussed here. He .

correctly observed that the phase shift satisfied a second-order differential

equation, one solution of which is a constant. He did not, however, state the

differential equation or the form of the second solution. This has led to some

misconceptions among some authors about the phase shift. Dobrokhotov and Maslov

[] examined the same (non-dissipative) equation as Luke [5]. Using some

excellent new ideas, they determined a differential equation for the phase shift. 1

Unfortunately, they inadvertantly omitted a term in their dissipationless analysis

which caused an error in their result. In this paper, we will derive the correct

second-order differential equation for the phase shift and do it in a simpler

manner, including arbitrary damping. We also obtain the solutions to this equation

and show how it leads toa new and unexpected adiahatic invariant for dissipative equations.

In §2, we analyze second-order nonlinear differential equations of the form

ttd + Eh (y, ,T) + V (y,T) =0 , (1.1)
dt

with coefficients varying on the slow time T = ct. Here V(y,T) is a nonlinear

.&-
r -. "-t ." .' . ".'' .. " '' """" '" '"-/.2 " ..-. .' , ' :' -'" ' VP , U U ... Up ,
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potential that admits periodic solutions when E=0. The term h(yt,T ) is
dtT)i

assumed to be odd in dy/dt in order to represent an arbitrary small nonlinear

damping. This generalizes the approach of Kuzmak [4] who only included quasi-

linear damping. We first quickly show well-known results. To leading order,

y = yo(), which is even in p, where

[e'(T)]2 y0  + Vy(YOT) = 0 (1.2)

Thus, the energy E(T) is slowly varying

2 '(T)](y) + V(yo,T) = E(T) . (1.3)

Here , is the fast variable, where , = + (T). We will eventually determine

the phase shift ,(T). Luke [5] showed the period in q must be constant and hence

the frequency (.(E,T) satisfies

IE -T) e'(T) J 2 max (14

Y n [E(T) - V(yo,T)](1

where Yo min(ET) and yore(E,T) are, respectively,the minimum and maximum of the

fast nonlinear oscillator. After performing a perturbation expansion,

Y = YO + Y1 + ... , we obtain

L(yi) = Ri  , i 1,2,3,... , (1.5)

where L is the linearized operator resulting from (1.2) and where Ri is the

corresponding right-hand side described in more detail in §2. By the Fredholm

-i



alternative (for (1.5) with i= 1), equivalent to eliminating secular terms, we

obtain Kuzmak's result [4] that the action I is dissipated:

dl = 0 (1.6)

where the action is twice the average value of the kinetic energy divided by

the frequency:

I(E,T) =_ w(ET) f(Yo2 d,, (1.7)

and where D is energy dissipated over one fast oscillation:

D = J h(y0 ,wy0, T) yo dy . (1.8)

Equation (1.4) and (1.6) determine E(T) and e'(T). If there is no dissipation,

then the action I is conserved (to this order) and is the well-known adiabatic

invariant.

Next in f2, we determine the second-order differential equation for the

phase shift ¢(T) by examining the 0(E) terms of the exact version, developed

by Whitham ([F] and [10]), of the action enuation. Our new result is

d 0ddT 0 (1.9)

Our method only requires a calculation of yl, and hence is much simpler

than the usual elaborate vrocedure of applying the secularity condition at

O( 2). We relegate this to Anoendix A, correcting Dobrokhotov and Maslov [1].

Tn (1.9), E is the rate of change of frequency with respect to energy keeping

T fixed via (1.4). Thus, the nerturbation of the modulated frequency dW/dT

divided by (E is a new adiabatic invariant. Equation (1.9) easily determines

¢(T) from initial conditions as is discussed in §3.

-A. A. .-. - .
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Enuation (1.9) is unexpected. In general, perturbations effect the

functional form of the dependence of the frequency on the amplitude. However,

in §4 we show that for dissipative perturbations (limited to the Eh term in

(1.1) which is odd in dy/dt) the variation of both frequency, wl = do/dT,

and action are only due to changes in the averaged perturbed energy E . For

example, it is shown that wl = El WE I which uses the leading-order amplitude

dependence of the frequency. Thus, (1.9) states that the averaged perturbed

energy does not vary. Furthermore, in §4 it is shown that (1.9) results from

considerations of the linearization of the equations for action and frequency

with resDect to changes of the averaged energy. We believe the simplicity

of (1.9) is due to damping primarily influencing the amplitude, not the frequency.

However, the result (1.9) fundamentally depends on the damping through the

dissipation (1.6). We reiterate that action is not an adiabatic invariant

but 0'(T)/E is. Thus, (1.9) completes the description of the leading order

problem for long time; it shows that 6(T) is not necessarily constant. For

other tyDes of perturbations, the phase shift will satisfy nonhomogeneous

versions of (l.n).

2. Strongly Nonlinear Oscillators.

We consider the second-order nonlinear differential equation which describes

strongly nonlinear, slowly varying, and weakly damped oscillators:

-dt + Eh (y, yT) + = 0 (2.1)

dt y

where V(y,T) is a nonlinear potential depending on the slow-time scale T = Et.

We assume the potential admits periodic solutions to (2.1) (for all fixed T) on

the fast time scale t without dissipation (i.e., when c=0). Also,in order for

the small perturbation E h to be dissipative, we assume h(y , dy/dt, T) is odd in

dy/dt. This allows negative dissipation as well as situations such as the

van der Pol oscillator in which both positive and negative dissipation may be

present simultaneously.

%~~~~ Nv* % %. % %.~ N" %~%1
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We use the method of multiple scales with the fast time scale p and

slow time scale T:

2 0(T)+(T

T -- ct , ,

so that, for example,

dy = [o'(T) + c 0'(T)] +
dt 3T

In the analysis to follow, we will rederive e(T) in the standard way and correctly

derive the phase shift O(T) for the first time. In this manner, (2.1) becomes

exactly

(o',+ , I)2 y + E[(e" + Ed")y + 2(0' + Eo')y ,T] + ch
(2.2)

+ E2yTT + Vy(y,T) = 0

We now introduce the perturbation expansion

y(,,T) = yo(,,T) + Eyl(,,T) + e2y 2(,T) +

It is convenient to note that

Vy (yT) = Vy(yo,T) + (Eyl + E 2y)V (yoT) + 2 y1  Vyo,T) + 0(3 )
y Y)Vy 2 VyyyYQJ

h(y,vT) = h(y,6'y 'y, + EyT)

- h(yo,e'y 0 ,T) + E[hy + hv(4'y0  + y + 6'yl )j + 0(C 2

OTo
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where v dy/dt, hy h hyO'0'Y0,,T) and hv  0 '(YO 'y 0 ,T) . .
y vIJJ

The result of substituting the perturbation expansion into (2.2) is the

nonlinear oscillator equation

[6'( + Vy(Y 0 ,T) =0 (2.3)

and its higher order perturbations

L(yk) =Rk , k = 1,2,3, ... (2.4)

2
where L -- (e'2 -  + Vyy(Y0 ,T) is the linearization of the nonlinear operator in

(2.3) and

R= -2e'¢'y 0  " e"y 0  - 2e'y 0  - h(y 0 ,'y,'T)

R2 : 2e'4y 1  - e"y 1  2e'yl _ ( 2y

- y 0-- 1Yy 2
"YOTT " 2"Y0 - ' T " yyy (Y0' .y

- hyy - hv(cp'y 0  + YO + e y )O YT e Yl

We now examine the 0(1) equation, (2.3). Multiplying by yo and integrating

once yields the conservation of energy equation

1 (e'y) + V(y0,T) = E(T) , (2.5)
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where E(T) is slowly varying in a well-known way that we will rederive. Equation
Yo

(2.5) defines curves in the (yo, -T- ) plane for fixed T. Because of our

assumptions concerning the potential, these curves will be closed and yo

will be periodic in i, oscillating between yo (E,T) and yo (E,T) withmi nYmax

V(YOm T) = E and V(yO ,T) = E. Since only even derivatives with respect to
min max

occur in (2.3), we can define ip, without loss of generality, such that yo( ,T)

is an even function of q, and so that p = 0 corresponds to yo(O,T) = YOmn

and - (0,T) = 0 (see Figure 1).
Yo

y (E,T) Y-'O- Omax (E T )

Ymi n

YO

Figure 1: Phase plane solution of yo for
fixed ET.

Using quadrature on equation (2.5), we obtain

e '(T) rYo( ,T) dyoJymi ±+722 [E - V(YoT)]

The period of the oscillation in the fast variable is equal to the loop integral

around the entire curve, or equivalently:

P(T) 26'(T) YOmax dYo (2.6)
m [E(T) - V(yo,T)]"Ymi n
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If P does depend on T, as is written, then as Luke [5] showed

-(yo ( + nP(T),T)) = n 1d yo (y,T) + yo (,,T), which is unbounded for large n.

Thus, LP = 0 and the period is constant. The period may be normalized to any

convenient constant, and we will choose 1 (although 27 is often used):

(E ,t) dYo _

w(E,T) E e'(T) : 2 ;'0_[( ( dy0  T -l (2.7)
Y (E,t) V2 [E(T) - V(Yo,T)]2 JYmin '

The actual period of the oscillation (to first order) in the real time t is

I/e'(T)so we are justified in referring to e'(T) as the frequency. We have

introduced the notation w(E,T) because partial derivatives with respect to E

(keeping T fixed) will be important. (Note the difference between w/3T

and dIdT = w/aT + 9,49E dE/dT.)

In order to examine higher order equations, we first need

to obtain some results on the linearized operator. By taking the derivative of

equation (2.3) with respect to , we find that yo is a homogeneous solution of

L(u) = 0. As was stated before, yo(y,T) is an even function of p, which means

that yo is an odd, periodic homogeneous solution. Since yo is periodic,

L(u) = 0 is equivalent to a Hill's equation. From Floquet theory the form of the

second homogeneous solution is u2 = A(T) o y + K( p,T) where K is even and periodic

in i with period one. Luke [5] showed that A(T) 0 if 0 in equation (2.6).

Thus, in the usual case, yo0 is the only periodic, homogeneous solution. In

order for solutions to (2.4) to be periodic, the Fredholm alternative states that

the right-hand side of (2.4) must be orthogonal to all periodic homogeneous

solutions of (2.4). This gives the condition

INote that in the linear case, IP/,E = 0 for all E and there are two periodic
solutions: cos 2 l and sin 2-...
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rl
YO Rk d : 0 . (2.8)

This is equivalent to eliminating secular terms in the usual way.

For k = 1, (2.8) becomes

2wyo YO' d p + 2w Yn YO ad Pr d O d"

Yo 0 P + 0oT p T f I

+ foh(yo, W yT)yoO di= 0 .

The first integral is zero since it is the integral of an odd periodic function

over one period. The next two integrals may be combined to give:

d J 1 y2dp +h(ywyo T)y 0(

o[dET] + d0  : 0 . (2.9a)

This is a well-known result [6]. We define the action, I(E,T), to be twice

the average value of the leading order kinetic energy divided by the leading

order frequency:

I(,T - (,T [(Yv 2  fYmax

I(ET) E w(ET) (Y d : 2 r2a [E - V(yo,T)] dy0  , (2.10)
"Ymin

using (2.5) and a change of variables (i.e., integrating in the phase plane).

We also define the dissipation (the energy dissipated over one fast oscillation):

1•D(ET) h(Yo,yoT)yO , (2.11)

Equation (2.9) becomes

-'_*.%~* .5 %** . . a. 1~*~ %% ,~ ~.%5~%, 5 %
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dI + D 0 (2.9b)

If there is no dissipation, the action is conserved (to this order) and is the

well-known adiabatic invariant. If h = h(T) t and thus h(yO Wy O ,T) = h(T)wyo,

then (2.9b) simplifies to

TI + h(T)I = 0

T
-fn6h(s)dswhich ([2],[4]) has the simple solution I(T) = l(O)e In any case,

however, the only unknowns in (2.7) and (2.9b) are w(E,T) and E(T), so that

these equations provide a closed system for w and E.

In order to find the equation for (T), it will be necessary to examine

higher-order terms and thus to know something about the form of y1 (p,T). By

taking the partial derivative of equation (2.5) with respect to E, noting that

(E,T), we obtain L(y0E) = -2 LwEYO . By direct substitution, we also find

that L( y0 ) 2 Yy0 W*. Therefore, YH yO0 E + uE Yo is a homogeneous

solution to (2.4), which is even in 4. Notice that yoE is even and periodic,

and thus, YH is in the form predicted by Floquet theory. (Furthermore, we

note that there are two periodic solutions if wE = 0. For the remainder of this

paper we assume wE(E,T) 0 since we believe that important cases correspond

to the period in real time t being a monotonic function of the energy.) Using

the facts that yo is even and h(y,v,T) is odd in v (which means h is odd in ip)

allows us to separate R1 =-2:'y0  + Rlodd where R consists only of terms
h odd

that are odd in y. Since L(.Y 0 ) :2}2y0 '
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Ylp ' Y + Yl (2.12)

1 %Pdd

where a specific odd part of the particular solution may be obtained by

reduction of order

y O Rl ddYO d , '

Yl = 2 p Y o d "  d 9'

Podd W f (Y4) 2

We will not need this expression for ypodd '.

To obtain the general solution, we now include the two homogeneous solutions,

yO and YH given above:

Yl = CI(T)yo + BI(T) (wYo + EIYo ) 'Yo + Yp
'4., Ei~j ~odd

In order for Yj to be bounded, the coefficient of pyo must be zero; therefore,

BI(T) = '/ww E9 in which case

Yl = C (T) yo + I YOE + Yl ' (2.13)
~Podd

%L-:.
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In Appendix A, we show how to determine an equation for j(T) by

eliminating the secular terms in the (2 ) equation, (2.8) with k= 2. Here,

we obtain the desired result in a simpler way; we use the periodicity

(secular) condition to derive an action enuation valid to all orders.

Whitham [10] showed that an exact equation for action may be obtained by

multiplying (2.2) by y and integrating over -. , using the assumption that

y is periodic in (with period 1):

d + rI Y2 [

3- ' y -2 d , + (0h(y,v,T)y dy 0 (2.14)

This is equivalent tothe usual secularity conditions at all orders. In

particular, to leading order this yields (2.9). More importantly, the

phase shift will be determined by the O(E) terms of (2.14):

d 2 y, "1I d-, + ' IJy2 d<

+ ,FhyYl+ hv (¢' + + 6+'y ) 0
YO v - Y OT Ilfd

(2.15)

Since hv is even in and hy is odd in t, only the even part of yl is needed

in (2.15). From (2.13)

Yl Y 0 , (2.16)

even "E E

and thus (since Jhv YOT Y0 . d. = 0 from parity considerations) equation

(2.15) becomes

,.,

-V
., ....-- .. , .- -. -.,.- ..'.,'.....-., .. :K'. 4" .q 'K --' , -,Q', V. ,.% - - -", 'p '':,,¢ ,
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SYoYo 0 yo d

+ I E + WEoY )y0 hv (2.17a)

+ YOEYO hy + YO h (Yo, Y ,T) d, 0

T O)Yo, Ior d IYO d ) + E E h(Yo' WYo 'T y , : 0 (2.17b) :

dT WE E d4) J + fhy 4y;* ~

Equation (2.17a) is equivalent to (A.2), derived from the secularity condition

at O(E2 ). Thus, the elaborate calculations in Appendix A are not necessary

to obtain the phase shift. In fact, we do not even need an expression for R2.

Using the definition of action (2.10) and dissipation (2.11), we obtain

d [ tI(T) I AI(T)

d[-(T) E +- - DE = 0 (2.17c)
T(ET) E(E,T)E

w E

However, action is dissipated via (2.9b), D = -dI/dT, so that (2.17c) becomes

d- [ '(T) IE I - E'(T) (dl

E E,T) E ET d = 0 ,

which is equivalent to

IE d [(T)] 0E E(E,T)

. [ , l!-T , " ll' - "- " " ' "I I l Hi I | ' : p l "P' _" "l l l "[" ',i l : l L I T -N. "$
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~max dYo
Since from (2.10) 1E 2 Ey [E - V(yT)] 20E Ymin 

-

it follows that

dT I[wE( ,T) ] :0 .(2.18)

Thus, (2.18) defines a new adiabatic invariant. Note that this is valid for

nonlinear oscillators with rather arbitrary (small)dissipation. An alternative
"IEE

expression occurs if we observe that, from above, wE 2 Here wE is

E
determined from (2.7) (do not differentiate under the integral sign), where we

note E(T) has been determined earlier from the coupling of (2.7) and (2.9b).

We refer to ,(T) as the phase shift and ,'(T) as the perturbation of the

modulated frequency. In the introduction to this paper we have described the

meaning of (2.18). In particular, (T) and '(T) are now easily determined

from their initial conditions.

Notice that the only unknown in (2.17) or (2.18) is q(T). The arbitrary

coefficient of the homogeneous solution in (2.13), CI(T), has dropped out of the

equation as Luke showed [5]. We note that it is possible for 4'(T) = 0, as

Kuzmak [4] assumed, but in general (2.18) is a second-order equation. It is

important to recognize this for the arbitrary initial value problem (see §3).

We can determine C1 by looking at the O(E2) terms of the action equation (2.14).

Proceeding in this manner, we can find Ck by looking at the O(Ek+l) action

ecuation. It is very imnortant that this orthogonalitv condition not involve

CK+ l, since Pk+2 does, in general, involve Yk+l' Lu!ke [5] showed this to be

true for the non-dissiPative case using secularity conditio's, and it is easy to

show for the general case. As is the case for O(T), we would find that Ck(T)
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satisfies a second-order equation.

3. Initial Value Problem

The importance of the new adiabatic invariant lies in the relevance of

'(T) (in particular c'(O))to the initial value problem for (2.1):

y(O) = O0 + Ea1 + C2E 2 + ...

(3.1)

Ay (0) = 0 + C 2a +

dt ( 1 2

with a i and i given. By using the multiple scale assumption and substituting

the asymptotic expansion, we obtain

yi(W(O),O) = Oi (3.2a)

e'(O) - (,(0),0) = 0 (3.2b)

Dy.

e'(0) -Yi (q(0),o) + ®'(0) Y (c(O),O) + -Yi - ()0) =
d--4- T (1()O) =

(3.2c)

since (0) = c(O) because e(o) = 0. To leading order, (3.2a) for i 0 and (3.2b)

form a closed system for c(0) and E(O), since from (2.7) e'(T) can be written

as a function of E(T) and a known function of T (e'(0) = w(E(O),O)). E(T) solves

a first order equation (2.9a) or (2.9b), and therefore (3.2a) and (3.2b) determine

E(T) uniquely (and e'(T) = .(E,T)). In addition, e(T) is uniquely determined

by integration since e(O) -0.
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However, :(T) solves a second-order equation and the information for the

unique determination of ;(T) is, as yet, incomplete. Thus, we consider the 0()

terms for the initial value problem, (3.2a) and (3.2c), both with i= 1. We

substitute the form of yl from (2.13) and obtain:

Cl(0) yo ( (O),o) + ¢'(O) E(E(O),O) : - Yl ((C),O)1 1 ( ( ) Tp odd

C (o>-l''(O)y 0  ( (O)'O) + .'(O)[E 9'(0) YOE (;(O)'O) + YO (:(0),0)]I ) y E0 +(E(O),O)

___ __ 1yO

E l ( - '(0) Pdd ((O),0 ) 0- ( (0)0)

(3.3)

In this form the righthand side is given or already determined. This linear

system of equations for C1 (O) and ¢'(O) has a unique solution if and only if:

YO ( 1(O),O)
-EY0 (z(O),O) (()O

I'(O)Yo (¢I(0)'0) -E(E(O),0 ) YO E( (O)'O)

+ YO ((O),O)

1
This determinant is just (E(O),O) times the Wronskian of the two homogeneous

solutions yo and yH of the linearized operator evaluated at 0 : ¢(0) and T=O.

By differentiatinq (2.5) with resnect to E, the Wronskian enuals I/w. Since

these two solutions are linearly independent, the determinant is non-zero and a

uninue solution for '(O) and Cl$r,) exists. C1 (0) (necessary since CI(T) satisfies

a second-order equation) and ( may then be determined in a similar manner from

the ((2 ) condition and so on. Thus, the method gives the solution for arbitrary

initial conditions. Note that the '(. ) initial conditions are necessary to deterrire

:'(0) and hence to determine the phase shift ¢(T) and the small frequency modulaticn

e .-- .- .
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-'(T) corresponding to the leading order long time solution. This is not surprising

as perturbed initial conditions change the energy and hence the frequency.

Using the expression for yl , we obtain from (3.3) and (2.18)
Podd

-'(T ) '(0) i ;.% y d wy Y O + hy d

(E,T) (E(O),O) 7O 7 T +  0 Yd 

(3.4)
+ W { IYo0 - ylYo j. T=O

4; = s(0)

To simplify this, we differentiate the energy equation (2.5) with respect to T

and intenrate it from .:0 to

2T, dE _1r (5
SyO d, - y v = .v dE d  (3.5)T 0  T 1

Evaluating (3.5) at 1, yields the following exnression for dE/dT, where

the action equation (2.9) has been used:

dE V T d - y d (3.6)

0OO

By substituting (3.6) in (3.5) and by noting that the lhs of (3.5) appears in

(3.4), we obtain

ioT 1(l 1 VT 0) d o - Vz hyO d
I'(T. '00) -- hYo ' d ... h0,dE(EE E(E(O),O) : (0 JO t ,

, - 0l)o,,-
+ W(S1yo- 1 y )T (3.7)

Equation (3.7) is significant. It determines the Perturbed frequency and shows how

it depends on the dissipation, ,hy0 d ., the slow time-dependence ofthe potential, VT9

and the perturbed initial conditions, oI and SI" For example, a simpler expression

results if -tI FI = 0 and there is no dissipation (h= 0); the frequency changes are

only due to a time-denendent notential. If in addition, VT = 0, then (T) is constant,

as is clear since in this snecial case there is no slow variation of the solution.

. .. . , -, , . . , *~ . . . . v- - -V . • P~ . ... P-( r- r - , p, ". . .d
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4. Discussion: Higher-order Frequency and Averaged Perturbed Energy.

The leading-order equations for the slow variation of a nonlinear oscillator

are the amplitude-dependent frequency (2.7) (based on the leading-order energy)

and the action equation (2.9). Our result concerning the phase shift is best

understood by considering higher-order expressions for both. In this section,

we note that changes in the frequency and action equations only result from

the linearization of them due to perturbing the averaged energy, if the

perturbation is dissipative, as we have assumed.

In Appendix B, it is shown that the frequency (2.7) is valid to 0(c)

if the average perturbed energy E is utilized in (2.7). Thus, the Taylor

expansion of the frequency c. ,(E) yields

l I El'E (4.1)

where El is the 0(E) perturbation of the averaged energy and wl = d /dT is

the 0() perturbation of the frequency (the frequency shift or derivative of

the phase shift). Here, frequency changes are only due to the averaged

energy changes, and thus, we might reason intuitively that (4.1) should be

valid.

Equation (4.1) is quite significant. For example, the leading-order

nonlinear oscillator satisfies

YO = YO( - ; E(T), T).

We expect that some of the perturbed solution yl results from changes in E.

In fact,
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Yl =E ly (4.2)

even EYOE

since from (4.1) E1 = do/dT/wE, showing that (4.2) is equivalent to (2.16).

Thus, (2.16) or (4.2) corresponds to the response due to perturbed average

energy levels.

Furthermore, (4.1) leads to an understanding of the phase shift. Since

action is valid to higher-order from (2.14) and both action and the dissipation

depend on the averaged energy E [7], it follows that

d
d I(E,T) + D(E,T) 0 (4.3)

To leading order, this yields (2.9). Higher-order terms may be simply

obtained by perturbing the averaged energy:

d (E IE + El D (4.4)
dT 1 E)E=EO

However, the partial derivative of (4.3) with respect to E is also valid.

Thus, (4.4) becomes

I -L(Eo
E (E1) = 0

* This shows that the averaged perturbed energy El does not vary. Using (4.1),

we obtain the adiabatic invariant, 1L d dT

d (d(/dT) 0 . (4.5)
T W

..e 1. -. * U
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Our results are only valid for the dissipative perturbation ch . For non-

dissipative perturbations or O(E2 ) dissipative perturbations, (4.5) becomes

a non-homogeneous equation for dq/dT.

Recently, we have extended the ideas of this paper to obtain the modulated

phase shift for oscillatory solutions of nonlinear dispersive waves

([7],[8], and [9]).

Acknowledgement. This research was supported in part by the Air Force Office

of Scientific Research, Air Force Systems Command, USAF, under grant AFOSR-87-0134.
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Annendix A: Hinher-order secularitv condition.

In this appendix, we show that the higher-order action equation (2.15)

is enuivalent to the result of eliminating the secular terms in the O(E 2 ) equations:

foR 2Yo dP = 3 (A.1)

The term Vyy(Yo,T)yl2yO dip in (A.) appears to be difficult to calculate

since yl is given by (2.13). However, if we integrate by parts, recall the

definition of L, and then use L(yl) = R,, we obtain

Vyyy(yo,T)Yl 2 d : 2 Vyo,T)y d i
JO 2y fo Y

2 [L(y I) - w dj ]l dip

1 d+ 2 [2w €' + ty o  +2wy0  +h(yOy 0 ,T)]yl d,

where the periodicity of many expressions has also been used. In this manner, .

from (A.), we obtain

112 IO' J (Yo0Yld 
)  - JoYO YI ] '

y.' 2. d dip]

1 1 20

+ fh(y,y T)y d + yo h d +Y

+ y Y + - di]
o01 y dT J0 o )

+ 1~)2 JoY YO yd-, + JOYO YOTh vd
+oYOY d : 0 (A.2)

- - 5-- . - . '-'.-.---.- .- .. . . .. . . .- -
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This corrects an error in Dobrokhotov and Maslov [1] due to an omitted term.

The first integral is exact and vanishes due to periodicity considerations. e

The underlined integrals vanish from parity considerations. Thus, (A.2) is

equivalent to (2.15) derived from the higher-order action equation.

Appendix B: Averaged Perturbed Energy.

It is useful in interpreting the phase shift to show that (4.1) is

valid, that is, to evaluate the averaged perturbed energy. The averaged

energy is defined to be

I1 1 (dy'12) -

E - 0 + V(y,T d(

When y is expanded and the multiple scale assumption is used, the leading-

order satisfies (2.5) with E replaced by EO. If E is defined as the O()E)

perturbation of the averaged energy, then from (B.1) we obtain

F-l &e'y (e' 1  + ¢, + y _ - ,2 ] d . (B.2)

l 0 Y .- ( 'Yl ; YO,+, YOT Ylyo d( .

using (2.3). We note that only yl is needed in (B.2), and thus, using
even

parity arguments and (2.16), we obtain

El  d*/dT/E

proving that (4.1) is valid. In a similar way it can be shown that (4.3) is

valid to one higher order.

.P

,-
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Abstract

Nonlinear dispersive oscillatory waves are analyzed for Korteweg-deVries

type partial differential equations with slowly varying coefficients and arbitrary

small perturbations. Spatial and temporal evolution of the amplitude parameters -

are determined in the usual way by the possible dissipation of the wave actions

for both momentum and energy. For dissipative perturbations, both wave actions

are shown to be valid to a higher order. Thus, the first variation of the wave

action equations is used to derive equations for the slow modulations of the

phase shift. It is shown that the phase shift satisfies a universal set of two

:oupled equations, each independent of the small dissipative perturbation.

"#
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Introduction

Kuzmak [4] made fundamental contributions to the method of multiple scales

in his analysis of the effects of weak dissipation and variable media on strongly

nonlinear oscillators satisfying ordinary differential equations. The slowly

varying frequency was shown to equal the local frequency, depending on the

amplitude. Kuzmak [4] also obtained the differential equation for the slowly

varying amplitude (a nonlinear generalization of the dissipation of action). For

strongly nonlinear dispersive waves (but without dissipation), satisfying the

Klein-Gordon equation (a partial differential equation) with variable coefficients,

Luke [5] obtained the dispersion relation and the partial differential equation

for the spatial and temporal slow evolution of the amplitude. Whitham [6]

generalized this by introducing the concept of wave action, enabling as an example

the calculation of the effects of variable media and weak dissipation on the

cnoidal waves for the Korteweg-deVries equation.

Kuzmak [4] assumed the phase shift was constant, while for a dissipationless

system, Luke [5] claimed that the phase shift could be constant, an important

distinction that has been very understandably overlooked by many. Unfortunately,

when Dobrokhotov and Maslov [2] reinvestigated this issue they made a critical

error. Although they obtained a second-order equation,

their results were incorrect. Furthermore, they only

analyzed unperturbed dissipationless systems.

Quite recently, Bourland and Haberman [1] analyzed nonlinear oscillators

with dissipation. Using some of the good ideas of Dobrokhotov and Maslov [2],

a simple second-order ordinary differential equation for the phase shift was

obtained. Most significantly, it was of universal form, independent of the type

of dissipation. Furthermore, there was a simple adiabatic invariant, enabling

the phase shift to be determined for arbitrary linear or nonlinear dissipation.

• . . . . . . , -. , - . . . • .. . . .- - . . . -. -
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The simplicity and generality of the phase shift for nonlinear oscillatory

ordinary differential equatiorsstrongly suggested that similar results would

be valid for weakly dissipated nonlinear dispersive waves propagating in a

slowly varying media. Efforts were simultaneously undertaken for Klein-Gordon

and Korteweg-deVries type equations; each guided the development of the other.

For the Klein-Gordon equation, the dissipation of wave action is fundamental,

in one spatial dimension,

DI +q x = -R , (1.1)

where I is the wave action, q is the flux of wave action, and R is the

dissipation. Haberman and Bourland [3] showed that the phase shift satisfies

the same partial differential equation, independent of the type of dissipation:

A -

DTI + Dxq = 0 , (1.2)

where D is the Taylor series operator

resulting from changes in the wave number and averaged perturbed energy.

In [3] it is shown that D depends on the phase shift in a linear way, so that

(1.2) is a linear partial differential equation for the phase shift. Once

D has been determined, (1.2) can be obtained from (1.1) by replacing 5 by DT

and -X by Dx and by neglecting the dissipation.

In this paper, we analyze Korteweg-deVries type equations for a variety of

reasons. It is an important type of equation because of its frequent occurrence

in physical problems and it can have great mathematical interest in the

remarkable cases where it is integrable and known to have exact multi-phase

periodic solutions. However, we investigate slow variations because nonlinear

periodic waves satisfy a third-order equation (not self-adjoint) which is

VP~~ ~~~~ le-.;..% . .~.
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thus more difficult than the corresponding problem for the Klein-Gordon equation.

For Korteweg-deVries type equations, there are two independent amplitude parameters,

while for the Klein-Gordon there was only one.

In §12, the method of multiple scales is used to analyze Korteweg-deVries

type equations with arbitrary small perturbations. Two equations are derived

representing the well-know dissipation of wave action for momentum and energy,

both in the form of (1.1), with I, q replaced by Ii, qi for i = 1,2. In §3,

higher order terms are shown to be obtained from the first variation of a form of

the wave action equations, an apparently general result since it is also valid

for the Klein-Gordon equation [3]. In 54, one operator D, depending on the

phase shift, is determined such that (1.2) is valid for both wave actions. In

this way, the phase shift for Korteweg-deVries type equations is shown to satisfy

a coupled system of partial differential equations (1.2) of universal form,

independent of the type of dissipation. The equations (1.2) are easy to express

once the operator D is determined. In §5, we show that these results correspond

to the linearization of the dispersion relation and the wave action equations with

respect to perturbations of the wave number and the averaged values of the amplitude

parameters. The operator D is now the Taylor series operator in these parameters.

2. Korteweg-deVries Type Equations.

In this paper, we analyze nonlinear partial differential equations with

slowly varying coefficients of the Korteweg-deVries (KdV) type:

1 2
ut + Quu(uX,T)u + -2 (X,T)ut uuX  Uxx x

-c h(UUU ,X,T) - 2h, (2.1a)

where I u,X,T) is the convective velocity. To correspond to nonlinear wave

phenomena in a slowly varying media, we allow quantities to depend on the slow time

• . -_ -_ ... . - ." .,,' '-. '--- ... . ..- -,.-. - ..' ." .-.- '.. -- '-,..'-' '.' ' - ,, ' ' ' ' " ' ' " I%
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and spatial scales, T = ct and X : cx. As we will show later in this section,

it is possible to assume that Quu(u,X,T) can be chosen such that there are nonlinear

oscillatory wave solutions of (2.1a)(for all fixed X and T) on the fast scale

t when the perturbations Eh and E2h1 are absent. Typical examples are

=1 3.Q = I(X,T)u , in which case (2.1) becomes the slowly varying and perturbed

Korteweg-deVries equation, and Q = 1 (X,T)u4, in which in a similar way (2.1a)

relates to the modified Korteweg-deVries equation.

The term c2hI is introduced since 0(c2) perturbations can influence the

leading order solution for long time. At first, we calculate the effects of

arbitrary slowly varying perturbations Eh and E2h1 . However, our primary interest

is in dissipative perturbations. Thus, later in the paper we assume Ch is

dissipative, but simplifications will only occur if we assume in addition that

2c hI is non-dissipative.
We briefly review some elementary ideas concerning conservation laws. We

interpret u as momentum-density, so that (2.1a)itself expresses the possible

dissipation of momentum by the perturbations:

au 1 U 2 uh - ch , 2.lb2
Tf x - Qu +rjUxx) Q ux + 2ca xu x - E1l(.b

where Qu + a2u is the momentum -flux. Here, momentum also may change due to
1 '

the variable media, represented by the terms Q and 2aaxuxx. Similarly,

multiplying (2.1a) by u shows how the energy may be dissipated:

_ 1 2 1l 2 32 1u  1

C-u2) + UQ 1 Q) + a E (uux) u .I Q

chu - 2 U (2.lc)

h

-. - . -. - o • . * -. - "o - -o .. % % *. % . % % % % " % % " • %",. " % %- " ." %°.• .
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Thus1Q + 2 [--x (UUx) - u2 ] is the energy flux.2 u - x 2 x

Typical linear perturbations are h = hou, which dissipates both momentum

and energy, and -h = ,uxx, a diffusive term which conserves momentum, but

dissipates energy. In this latter case, (2.1a)is of the KdV-Burgers type.

However, for the moment we will be quite general and make no assumptions

concerning ch or E2 h. Later, when we assume that ch represents dissipation,

we will allow any kind including nonlinear types.

To obtain the long time behavior of nonlinear dispersive waves including

the ffects of a slowly varying media and the small perturbations, the method

of multiple scales will be used. We follow Luke's [5] procedure for the Klein-

Gordon equation as re-examined by Haberman and Bourland [3]:

S(XT + (X,T

T ct

X =x

This method is particularly suited for determining the moduitions of the

phase shift *(X,T). For example,

-T = (OX + C x)U + FUx

In this way, (2.la) becomes "exactly"

- .%
l.-A
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T1 U+C + E( +£~ E: Q

(T+£TJ +4 UT +Xe 9 x u 7 TX u 2 ux

+ L2 (XT)[(e X+ E4 X) 3U 1;yp + 3E(8 X + E X) 2 uw

+ R (9 XX + E XX) (ex + E X ) U l 3E: (ex + £ X) uxx

+ R e£ + X £4 4,)x + £ ( + £4OXXX)U IP + E £XX

-ch[ue ,Cu + £ Xu + LUX, (eCx) 2  +

2cyxxu'" + 2£6x u X + Le XU + O(E 2, XT]

h I [u, X u, O(£), (e ) u + O(E),X,T]

(2.2)

The substitution of the perturbation expansion,

u = u + -u. + ' u +

will be facilitated by noting

QU(u,X,T) =Q U(u X,T) + (;u + F22 QU(IXT

2

+ ' Q2 U U0 x,T) + 0(,3

uuU5
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h[as in (2.2)] = h(uoS6xu UOsx 2 XT

+ E[h uu 1 + h u (C-u 1  + xu 0  + u0)
x x

2 2~U2
+ h u (e& u I + 2 *x + 29xU + exxu0  + O(C

uxx 44 yXp

where h, hx and h are evaluated at u0, 6u U > U0  X,T.
u ~ xx0

We obtain in this way, to leadina order, the nonlinear ordinary differential

equation which represents travelling wave solutions of the KdV type equations:

T U + ~~-Q (u0,X,T) + a2-i u0  0 ,(2.3)

where t2 2(Y,T). Equation (2.3) is solved in the usual way. Integration

yields

1 xT) 2 3
TUO + 0 x 0u (u0, + ()u 0  = B ,(2.4)

where B B(X,T). Bv.multiplying by 2u0  and integrating, we obtain an equation

which can be interpreted as conservation of energy for the system (2.4):

2 + 2 3 2=_I
,1Tu 0  ~XQ(UOPX,T) + X (u 0  2 =-Bu 0 + 2A ,(2.5)

where A = A(X,T). The parameters A(X,T) and B(X,T) are similar in spirit to

those introduced by Whitham [6] for the slowly varying KdV equation. Our

analysis is valid for those Q~~~)for which there are periodic solutions, see



2
the "potential" uTuO + &xQ(uo,X,T) of (2.5). From (2.5), we can define

u0(v,X,T) to be an even function of ,. We introduce the wave number k e x and

frequency .T. Luke [5] showed that the period in the fast variable ,

is constant. If we normalize that period to 1, we obtain the amplitude

dependent dispersion relation, w = w(k(X,T), A(X,T), B(X,T), X,T), for the

nonlinear dispersive wave in a nonhomogeneous media:

ak3/ 2 u max du0

r2 
2

u0  Vi2A- 2Bu 0 + u 0 - kQ(uoX,T)
min

(2.6)

where the wave oscillates from u0  to u0  , two successive zeroes of the
mi n max

denominator of (2.6). Here, there are two amplitude parameters A(X,T) and

B(X,T) unlike the case of the Klein-Gordon equation [3] where there is only

one E(X,T).

The higher order equations in the perturbation expansion are

L(ui) = Ri  i 1,2,... , (2.7)

where L is the linearization of the nonlinear operator in (2.3):

L + x + .X(2.8)

in a straight-forward manner, we obtain RI, the term we will need

to deternine the amplitude Darameters A(X,T) and B(X,T) and the phase shift

:(x,T). '.e do not need P_, ttou h it will be used in Appendix A to show that

our Procedure is equivalent to that ised by Dobrokhotov and Maslov [2]:

------------<Aw % • -,,a , ' % SA
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R 1 1
1 = "¢TuO UoT - 7 Ju 2 X uux

(-x o +3u 0  + 3exx x 0

h(uotexU ,0  u X,T) (2.9)

2 - TUl - UT - - ' 1 uuu

f1 Q (U Quu) + u Q
X 1 1U1 uu 2 X Iuu×

2 (3 2e u + 3 e x¢U 0  + 3e2u 1

+ 6ex xuo + 3 xeU 1  + 3¢XxexU0V , 0. X xx 1' xx ' x0

+3e ',u + 3X U + 36 u + u
3xx.x 0 X 0 X .X 0 xxx 0

hl(U0 xU0 ,j9xUo , X, T) - u1h - (eU1 + U0  + u0) h

2 u + 2xxUo +c" u + u)0 h., # 2 X XX xx

(2.10)

Equation (2.7) is a third-order equation. In order for ui to be periodic

(in .), the Fredholm alternative implies that Ri must be orthogonal to all

periodic solutions, 1 and uo, of the homogeneous adjoint equation:

* . % *L . . . . . -
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JRid = 0 i = 1,2, ... (2.11)

J R u0 ds = 0 i = 1,2, (2.12)
0

At 0(E), these yield the well-known equations to determine A(.X,T) and

B(X,T). Using (2.9) and (2.11), directly yields

hIu 0 eIu0 ,oiu2 'X'T)d1

f 10 1ux2
T u0 d, 2 -f jU Q - foX d  -l QuoexUo ,9xUo d

(2.13)

since u is periodic. This shows that wave-momentum action may not be

conserved due to the rhs of (2.13). Using (2.9) and (2.12), after some

elementary algebra, we derive a similar result for the possible variation of

wave-energy action:

0 ~ 0o ,T'0 u0
2 d, 2 XJ (uOQu -Q)d, + - 0

-2 2 (u,2 d
, 1 2

h(uo, exu ,1 ex2 uo X, T)uodp . (2.14)

Here, QX is the partial derivative of Q with respect to X keeping u fixed.
In many problems, the convective velocity Quu only depends on u, and thus in

this case, Q, = 0, preserving the conservation form of (2.13) and (2.14) if h=0.

The integrals in (2.13) and (2.14) depend on A(X,T), B(X,T), k(X,T), and

_'A,B,k,x,T). Thus the disrersion relation (2.6) and conservation of waves,

J .A:
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combined with (2.13) and (2.14) determine the amplitude parameters A(X,T)

and B(X,T) and the dominant phase parameters k(X,T) and w(A,B,k,X,T), but not

the phase shift p(X,T). Equations (2.13) and (2.14) agree with Whitham's [6]

1 3
result for the KdV. However, for the KdV, Q = *u and thus the momentum

flux Qu is proportional to the energy density u 2 , reducing by one the number

of independent integrals in (2.13) and (2.14). These results also show that even

though the KDV has an infinite number of conservaiton laws, momentum and energy

are the only appropriate ones to consider when perturbations are applied.

3. Higher-Order Wave Actions.

In Appendix A, we determine the equations for the modulations of the

phase shift c(X,T) by eliminating secular terms at 0(C2

0 R2 d. = 0 and JOd R2u0 = 0 . (3.1a,b)

This approach is somewhat involved since it requires R2 given by (2.10).

Here, we use a simpler method which yields equivalent results. We show that

the phase shift is determined from the 0(c) wave action equations.

As Whitham [6] has shown for Klein-Gordon equations, exact equations for

the wave actions may be derived. For KdV type equations, an exact expression

for wave-momentum action is obtained by integrating (2.2) over from 0 to 1

and applying the periodicity of u:

V.

S

...- .. . .- . .. ..... -. , - ... . ... . . . . .,- - -. - -' -, -. - -. ,. -% . .- . ..- . ,.,'.,. ,
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1 1: 1x 3 1
u j d i4+ y7 JQud~ -4 - u d. + ~a~ udY

- ohd - d, (3.2)
JO0

By first multiplying (2.2) by u and then integrating, we obtain (with more

effort) an exact expression for wave-energy action:

- -d m'+  -' O (uQu  Q)d-, + Qxd, - UQuxd '

TJ 2'"~ J0  0 NI~ 0 X2XX

- 2 - [(+ ,x)2  u d - 3a2-- [(e x + E; x ) uuxd,]

2 2 rI 1I rl
+0 uuxxx; = d j.hudy- c J hlud,

(3.3)

It is perhaps even simpler to obtain (3.2) and (3.3) by directly introducing

the multiple-scale assumption into (2.1b) and (2.1c), and then integrating.

Wave-momentum action (3.2) is "identical" to the leading-order result (2.13)

if the entire u is used as well as the total wave number, ex + C X' except

for the effects of the perturbations and 0(c3) dispersive term. However,

wave-energy action (3.3) is alterred slightly by the additional term

- 3 a -2C I e(OX+ X) f u, uxdA . This is an O(E) correction, but since
77 X X0 2

u0 is even in y, it is in fact smaller being at least O(E2). Thus, we have

shown that both wave actions are valid to at least one higher order if the

effects of the perturbation% --h and c2h l , are properly introduced.

IL
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These exact wave action equations, (3.2) and (3.3), are equivalent to

eliminating secular terms at all orders. For example, (3.2) is the same to

leading order as (2.13), and (3.3) relates similarly to (2.14). Moreover,

evaluating the exact action equations to O(c) is equivalent to eliminating

secular terms at O(c 2) (see Appendix A). In particular, the O(E) wave-

momentum action terms from (3.2) yield

11l
7Ud + 2 JXQuuuld - QuuXul d jhd - JO 65 d

(3.4)

and similarly the wave-energy action terms from (3.3) become

rI 1 r 1 1
uould,. + * uoulQuud -oO uuIQ d-T 0O 0 1 X Jo 0 1 uux

2~ 2 (1 22
3 2u u2 d7 3a [X u d

- -X [ JO' u d ] - [ 0(u 0 X ) d']

: - h Uod' Jo6sod 0 d (3.5)

where we have separated the terms 6h resulting from

the variation of h and the terms 6s resulting from the O(c2) perturbation

and the slow derivatives of Q,uO, and k:

= 11 u+ h (. uW~ + xuo ) + h (euI  + 2e U0,hs uI + ) , X01 ux + h 1

6 = hux u0x + hu xx( 2exUo X +exxuCV)+hI

For ch to be a dissipative perturbation, h(u,u xu xxX,T) must be even in the

u x argument [i.e. h(u,-u xu X,T) = h(u Ux,uxx,X,T)]. Since u0 is even in ip, in

Generalizations to other kinds of dissipation (for example, dependent on third
or higher derivatives) are easily made.
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2
this case h(uox U0 SexUo ,X,T) is even in ,, hu  is odd, and h is even.

, x xx

We thus obtain that the slowly varying terms 6s ha e no effect,

1 1
d = u d =0, if -h is dissipative and Eh is non-dissipative

Jo s )0 s 0 1

(odd in the ux argument). In this case (3.2) and (3.3) are the first variation

of the wave action equations. Therefore, the wave action equations (2.13) and

2(2.14) are valid to at least one higher order if ch is dissipative and c2h
2

is non-dissipative. This means that (2.13) and (2.14) are valid to O(C ) when

u- u0 + Eu I and ex .-- k + EX 9 if the contribution from 6 vanishes. In

general, this is not valid, but (3.2) and (3.3) are valid.

4. Modulated Phase Shift for KdV Type Equations.

The equations for the modulations of the phase shift O(X,T) will be

determined in this section by evaluating the appropriate higher order action

equations, (3.4) and (3.5). We will assume ch is dissipative and E2hI non-
dissipative "s(1,uo)d. = 0. These equations require knowing properties

'0

of uI, which satisfies L(uI) = R I. By differentiating (2.3) with respect

to , we immediately obtain the well-known result that

L(u0  ) 0 , (4.1)

that is, uo is a homogeneous periodic solution, which is odd in .

It is less well-known that the other homogeneous solutions may be obtained

by differentiation with respect to a parameter. Dobrokhotov and Maslov [2]

used this idea for both ordinary and partial differential equations of the

Klein-Gordon type, but an alternate representation introduced by Haberman and

Bourland [3] yields a better result for o(X,T), independent of the type of
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dissipation. We should recall that the parameter - in (2.3) satisfies the

dispersion relation (2.6) and thus is a function of A, B, and k. By directly

taking the first partial derivatives of (2.3) with respect to these, we obtain

L(u0A) = AuO (4.2)

L(u0  ) = -BUo (4.3)
B

L( ) = -kuO 7 QuuUO 30 kU 0

An equivalent form of the latter expression is obtained using (2.3)

L(u = (-k L)u 0 +QuuU 0 (4.4)
0k k uO

This has yielded a second homogeneous solution, BuA -A AUOBI which is periodic

and even (and hence independent of u0 ). To obtain a third homogeneous

solution, our experience with the Klein-Gordon equation suggests we should

analyze the non-periodic even function yo . By direct calculation

L(.u 0 ) = - u0  + kQ u + 3a k u

Using (2.3) again, we obtain

L(yUo ) = 2.)u 0 - kQuuU0  "

Thus from (4.2)- (4.4), a proper combination of u0 A, u0 , and q)u0 will be

a third homogeneous solution, namely A(uO + 0 - k - k) , which is

VA

P1VN*X<_,, P-j& *P . ' ..
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even and non-periodic. [uO could be used here with A B instead of uO.]
0BA B0A

We are now able to solve L(ul) = P1. We could use variation of parameters.

However, it is easier for us to note that from (2.9)

U T , Qu 32 c XU

L(ul ) = R1  = -uTuO " X - 2 2
even odd

L(u R1  =-u +Qu 2(3-U

odd even T _ X

since h is even for dissipative perturbations. The integrals in (3.4) and (3.5)

only require the even part of ul, u1  , significantly simplifying the needed
even

calculations. Equation (2.3) is used once more (to eliminate uo ) so that

L(ul U (-T - 3=:x Qu U
even 0  T -

By appropriate use of (4.2) and (4.4), we have that

u0A
L[u, + 0

~XO+uO -( T + Wk~x) ] = 0

even *XU0k 
A T

Thus, the expression in the bracket is a homogeneous solution, which is periodic

and even. The only periodic even homogeneous solution is .Bu - ;wAu0 this

must be proportional to it, so that

1Xu 0  T + ) + C( u - wAu) 0 (4.5a)
even k -A k X 2(BA B

where C 2(X,T) is an arbitrary multiple of the periodic and even homogeneous

solution. We have thus shown that the arbitrary multiple of the other homogeneous

.. .. . . .. . ... . . . .- .• . . - - , -.- .--..... - V , - , .'. , \
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solution, uo , vanishes when the secularity conditions equivalent to (3.4)

and (3.6) are applied. Luke [5] had shown a similar result for the Klein-

Gordon equation.

The substitution of (4.5a) into (3.4) and (3.5) appears formidable.

We can make the calculation elementary by using an observation by Haberman

and Bourland [3] for the Klein-Gordon equation. Equation (4.5a) is equivalent

to

ul e DvUe , (4.5b)
ever,"

where D is a linear first-order (in the slow parameters) differential operator

with variable coefficients:

+ -kT kX - (4.5c)x ',k +A c2 'T ( B " - A 4. c,

In g5, we show that D is the Taylor series operator in the parameters A, B, and k.

This operator has the property that

D(k) = -X and D) :T , (4.6)

which will be quite useful.

The rhs of the higher-order action equations (3.4) and (3.5) are simplified

by noting that

,++, .,,+' . , " _w . % ,+m m% =% . % ", .'. , % , - % , ". . . % " 1, + + --. + _ + + + . . . . ..
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^ ,1

= 2D oh(Uo,=1x Uo ,,xUo. ,X,T) d.

00

and similarly

^ 1 2

D , h(u0 " U "X UO dX,T)u0d, h u0 d ,

0 U0  ,XTJOd j"h0=

since 0 is a first-order partial differential operator in the slow parameters
^

that commutes sith thefast derivatives '/: .. We also used u = Du and
-even

C' . There are correspondinq simplifications for the -hs of (3.4) and

5 First of all,

.- 1 "1 - 0i' rl.

SQ Ud Q u d , o0uxd QuuxDuod
'U '0

..1 A
I ( u  -- ,)d. u D u0 d , and

"0 0 u' 0, 0 uu' D 0 d

id D ud.
~0U 0 -o A 0 4uu* 0

since 0 depends on A, B, and k only through uO. In addition, for (3.5), we note

that

~ .,.%j~~j.,s, 1 ,..,a
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2~ 12 1)2

D d 2 d 2k= DuD()d .
0 0

t

S 1 22 -1 ^' .1 ,,2 .4

D ( u0 d.) = "X;2uoDU d 2D() (u d"
"0 "0 ,4

where again D(k) = iX In this manner, we derive the remarkable simple result

that the higher order wave action equations (respectively momentum and energy)

have the following nearly conservation form:

.. 11 .. -1 ,, .11 l

T 0 d. + Qu d. = D0 hd. - Q d. (4.7)

C d.2 + [ (uoQu - )d -1 .1 -0 ~d
"0

• 1,1u 2 d -1

2~~ 2~ 2 ~ - u

(4.8)

in the case where the perturbation *h is dissipative and hl is non-dissipative.

It is interesting tcnote that ,4.7) and (4.8) may be obtained frorr the leadln(

order action equations, (2.13) and (2.14), by replacing the derivative terms ot t'e

conservation law by the respective derivative actinj on D (i.e.,

by 0 -a 0) and the non-derivative terms in the action equations, 1 ~ .rl .1 .. ,!

by C operating on them (i.e. Qxd , by D )o QXd, 0ohd. by D hd., etc.). we'0 '0

[3] have also shown this Phenomena for the Klein-Gordon equation, and thus we

believe it to be a general principle for appropriately perturbed systems. Perna;-..

a general proof of its validity could be given using Whitham's [61 averaged

Lagrangian principle with tle necessary inclusion of weak dissipation.

Although '4.7) and 4. a 3rP re,,irkab l simple, expre£sin(J the valldit, o'

- % - , o • . . o •. .. , . . V. •* .4 , • . ... , .
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e r",s: ,a,',t~c.n of each wave action:

I k %

!. " l B + k T  %
(5.4) "

SIxqB kIxqk

,tre -e note that all the dissipation terms have been balanced, leaving a- a-

-e ' t e* rersai forr.

he _.& .e the conjectired frequency perturbation (5.2) to eliminate A1

-B (5.5)

and It can be shown [non-trivial, but straight

, a . .5'- 4.6)] that 5'

(5.6)

.. . ,er ... s subst',tuted into (5.4), we obtain "'

C IA 2)T B (BC2)TI A  +,-,"'

q A - (AC2)XqB ((5BC2).XqA +  XX6qk 0

^" ' e.,-., alert to '4.' - (4,12). In this way, we have verified the

,,,,:t tat a hi,:;ly accurate dispersion relation may be obtained using

, e er*tjrtations of tle a-plitude parameters. Furthermore, the modulations p

Sar, d tte, from equations equivalent to the highly

, K-(") I -"(,<C-- %- %- +

V " B B TA T
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accurate wave action equations, when highly accurate dispersion is calculated.

We now explain our earlier remark that D is the Taylor series operator in

the parameters A, B, and k. The leading-order oscillatory wave solution for

KdV type equations is in the form u0 
= u0 ('1 ;A,B,k), when the dispersion relation

(2.6) is satisfied. Some (but not all) perturbations of this can be obtained

by perturbing the parameters A, B, and k (a Taylor series) in which case

u I Du 0 , where
2ven

0= A1 .+ B -B+ k -k (5.7)I lA1B 1 k

Through the use of (5.5) and (5.6), it is seen that (5.7) is identical to (4.5c).

22
Appendix A: Secularity Condition at 0( 2)

In this appendix, we show that eliminating the secular terms at 0(E 2 ) is

equivalent to analyzing the 0(E) wave action equations. From (3.1a) using

(2.10), we immediately obtain (3.2) using the pericCicity of u0,uI, and functions

of uO. Similar results are obtained for wave-energy action, but with much greater
1

effort. One term that is present in 1R2Uod = 0 can be evaluated using some

ideas that worked on the Klein-Gordon equation ([2],[3]):

u2
u 1 u 2 u Q - 2%u d

= oUJQ1  = -ex u (U Quu d,

- ~ ~ave integrated by parts three times (equivalent to using the adjoint

.ed the definition of L, and noted L(u 1) R1, where RIis given

1 1

f Lfter a lengthy bUt elementary calculation, 0R2u0d 0bcms(.)
- - R T~d 2=u0]becomes (3l3).

= L ?I  - _, ~ ~ ' ~ ~ * * * * ~ ~ .* ~ -

¥'- - 0"*~
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Appendix 8: Some Integral Identities

The averaged densities and fluxes in (4.10) and (4.11) can be related.

By integrating (2.4) using the periodicity of uO, we obtain

11
a

- Iudi +Ik oQud1 =Q - B . (B.1)

By simply using (B.1), (4.13) is obtained from (4.10). It is not much harder

to derive (4.14). Multiplying (2.4) by u0 and integrating yields

f 1 2 A
u0 d, + 1 k UQ d k 23 d = -Bj0 d (B.2)

However, by integrating (2.5) we obtain

(I u 2 d' + k Qd. + 2 0k3u2d q 2B u0 d +2A
J 0 J0 J0 0

(B.3)

Equations (B.2) and (B.3) may be combined to yield

3 2k 2rlu 2 d  A 1 2 d4 -

JO O d;+ k k 0O  - (Q-uIu duY

O

from which (4.11) directly becomes (4.14) since terms involving J (Q-uQ)d; t

cancel.
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